Ariane 4 XL und XXL

Dieser Beitrag stammt aus dem Blog und soll die Möglichkeiten beleuchten die noch offen gewesen wären die Ariane 4 weiter in der Leistung zu steigern. Es ist kein konkreter Plan der jemals verfolgt wurde.

Nehmen wir mal an (Ich nehme immer gerne an), wir hätten die Ariane 5 nicht entwickelt - Wäre nicht auch die Ariane 4 weiter entwickelbar gewesen, um den steigenden Satellitenmassen nachzukommen? Ja natürlich! An dieser Stelle mal wieder ein Beitrag in der Rubrik "Gut das wir es besser wissen!". Um die Nutzlast zu erhöhen ist es bei der Ariane 4 nötig vor allem die beiden oberen Stufen zu vergrößern. Zum einen weil sie bei der Berechnung des Voll/Leermasseverhältnisses wichtiger für die Nutzlast sind, zum zweiten weil die Stufen einen höheren spezifischen Impuls aufweisen. So brachten 2 t mehr Treibstoff in der dritten Stufe rund 300 kg mehr Nutzlast, für weitere 1.200 kg mehr Nutzlast mussten in der ersten Stufe zwei Booster mit rund 90 t Startgewicht angebracht werden. Da die bisherige Entwicklung, vor allem die untere Stufe (wozu man die Booster hinzuzählen muss) erhöhten, sollte dies eine deutliche Nutzlaststeigerung bringen.

Um größere Oberstufen zu transportieren, muss mehr Schub vorhanden sein. Der erste Vorschlag den ich habe, wurde schon bei der Konzeption der Ariane 4 gemacht: Der Einbau eines fünften Triebwerks in die erste Stufe. Dieses liefert rund 700 kN Schub. Bei einer Mindestbeschleunigung von 1.2 g entspricht dies rund 60 t mehr Gewicht. Die Oberstufen können also rund 60 t mehr wiegen. Derzeit wiegen sie zusammen rund 51 t. Das entspricht also einer Verdopplung des Gewichts. Geschickterweise entspricht dies genau dem Verhältnis (3.80/2.60)². 3.80 m das ist der Durchmesser der ersten Stufe, 2.60 m das ist der Durchmesser der zweiten und dritten Stufe. Würde man die bisherige Gestalt bei Beibehaltung der Länge auf durchgehend 3.80 m Durchmesser erweitern, so  erhält man folgende Rakete:

Typenblatt Ariane 4 XL

Länge:
maximaler Durchmesser:
Startgewicht:

54,90-58,70 m
3.80 m
544.000 kg

Einsatzzeitraum:
Starts:
Fehlstarts:
Zuverlässigkeit:

?
?
?

Nutzlast:

7500 kg (in einen GTO Orbit)

Stufe 1 L220 5 Triebwerke

Länge:
Durchmesser:
Startgewicht:
Leergewicht:
Triebwerk:
Schub:

Brenndauer:
Treibstoff:
spezifischer Impuls:

28,39 m
3.80 m
252.200 kg (max.)
18.510 kg
5 Triebwerke Viking IVB
5 x 680 kN (Meereshöhe)
5 x 758 kN (Vakuum)
164 s
NTO/UH25
2432 m/s (Meereshöhe) 2747 m/s (Vakuum)

Flüssigbooster PAL

Länge:
Durchmesser:
Startgewicht:
Leergewicht:
Triebwerk:
Schub:
Brenndauer:
Treibstoff:

19,00 m
2,22 m
4 x 4.550 kg (max.) 4100-4400 kg (typ.)
4 x 44.650 kg (max.) 43.550 kg (typ.)
1 x Viking VI
670 kN (Meereshöhe), 750 kN (maximal)
142 s
NTO/UH25

Stufe 2 L77

Länge:
Durchmesser:
Startgewicht:
Trockengewicht:
Triebwerk:
Schub:
Brenndauer:
Treibstoff:
spezifischer Impuls:

11.61 m
3,80 m
84.200 kg (max.)
7,200 kg
2 x Viking VB
2 x 798 kN (Vakuum)
140 s
NTO/UH25
2904 m/s

Stufe 3 H25

Länge:
Durchmesser:
Startgewicht:
Leergewicht:
Triebwerke:
Schub:
Brenndauer:
Treibstoff:
spezifischer Impuls

11.14 m (max.)
3,80 m
28.100 kg
2,600 kg
2 x HM-7B
2 x 64.8 kN (Vakuum)
860 s
LOX/LH2
4373 m/s

VEB

Länge:
Durchmesser:
Gewicht:

1.04 m
4.00 m
600 kg

Nutzlasthülle

Länge:

Volumen:
Durchmesser:
Gewicht:

8.60, 9.60 und 11.10 m
60 m³ / 70 m³ / 86 m³
4.00 m
750 / 810 kg

Spelda

Volumen:
Durchmesser:

Höhe:
Gewicht:

23 m³ / 26 m³ / 32 m³ / 42 m³
4.00 m
1,80 m / 2,10 m / 2.80 / 3.80 m
300 kg / 350 kg / 380 kg / 410 kg

(Ich mache mal Gebrauch von den Typenblättern, die ich für das aktuelle Buch eingeführt habe. Eventuell werde ich diese auch ins Web übernehmen). Die zweite und dritte Stufe sind 58.8 t schwerer, das passt also ideal zum erhöhten Schub. Nötig ist dann allerdings auch jeweils ein zweites Triebwerk in diesen beiden Stufen. Die Nutzlast beträgt 7.500 kg, das sind 2.600 kg mehr als bei der Ariane 43L bei einer nur 13 % höheren Startmasse. Also eine echte Verbesserung (52  % mehr Nutzlast bei nur 13 % höherer Startmasse).

Geht noch mehr? Natürlich. Wer sagt denn, das es nur vier Booster sein müssen? Technisch können bis zu acht Booster an eine Ariane 4 angeflanscht werden. So viele gehen auf einen Kreis mit einem Radius von 6.03 m (2.21 + 3.81 m Durchmesser von Booster und Hauptstufe) Die vier weiteren Booster vergrößern die Masse der ersten Stufe. Vor allem aber liefern sie mehr Schub und erlauben so eine Vergrößerung der oberen Stufen. Jeder Booster wiegt rund 45 t, liefert aber 70 t Schub. Bei einer Beschleunigung von 1.2 g erlaubt jeder Booster also die Vergrößerung der oberen Stufen um rund 15 t. 4 Booster also um 60 t. Eine Vergrößerung des Durchmessers der zweiten und dritten Stufe auf 4.7 m würde ziemlich genau die zusätzlichen 60 t ergeben. Man erhält dann folgendes Typenblatt

Typenblatt Ariane 4 XXL

Länge:
maximaler Durchmesser:
Startgewicht:

54,90-58,70 m
4,70 m
779.100 kg

Einsatzzeitraum:

Starts:
Fehlstarts:
Zuverlässigkeit:

?
?
?

Nutzlast:

12.100 kg (in einen GTO Orbit)

Stufe 1 L220 5 Triebwerke

Länge:
Durchmesser:
Startgewicht:
Leergewicht:
Triebwerk:
Schub:

Brenndauer:
Treibstoff:
spezifischer Impuls:

28,39 m
3.80 m
252.200 kg (max.)
18.510 kg
5 Triebwerke Viking IVB
5 x 680 kN (Meereshöhe)
5 x 758 kN (Vakuum)
164 s
NTO/UH25

2432 m/s (Meereshöhe) 2747 m/s (Vakuum)

Flüssigbooster PAL

Länge:
Durchmesser:
Startgewicht:
Leergewicht:
Triebwerk:
Schub:
Brenndauer:
Treibstoff:

19,00 m
2,22 m
8 x 4.550 kg (max.) 4100-4400 kg (typ.)
8 x 44.650 kg (max.) 43.550 kg (typ.)
1 x Viking VI
670 kN (Meereshöhe), 750 kN (maximal)
142 s
NTO/UH25

Stufe 2 L117

Länge:
Durchmesser:
Startgewicht:
Trockengewicht:
Triebwerk:
Schub:
Brenndauer:
Treibstoff:
spezifischer Impuls:

11.61 m
4,70 m
128.800 kg (max.)
11.000 kg
3 x Viking VB
3 x 798 kN (Vakuum)
142 s
NTO/UH25
2904 m/s

Stufe 3 H40

Länge:
Durchmesser:
Startgewicht:
Leergewicht:
Triebwerke:
Schub:
Brenndauer:
Treibstoff:
spezifischer Impuls (Vakuum)

11.14 m (max.)
4,70 m
43.800 kg
4,000 kg
3 x HM-7B
3 x 64.8 kN (Vakuum)
895 s
LOX/LH2
4373 m/s

VEB

Länge:
Durchmesser:
Gewicht:

1.04 m
4.00 m
600 kg

Nutzlasthülle

Länge:
Volumen:
Durchmesser:
Gewicht:

8.60, 9.60 und 11.10 m
60 m³ / 70 m³ / 86 m³
4.00 m
750 / 810 kg

Spelda

Volumen:
Durchmesser:
Höhe:
Gewicht:

23 m³ / 26 m³ / 32 m³ / 42 m³
4.00 m
1,80 m / 2,10 m / 2.80 / 3.80 m
300 kg / 350 kg / 380 kg / 410 kg

Wie sich zeigt: Bei nahezu gleicher Startmasse wie eine Ariane 5 ECA transportiert diese Version 12.1 t in den GTO Orbit (zugegeben sehr optimistisch, da die VEB gleich groß blieb, aber mehr als die ESC-A wird es in jedem Fall sein) Einsetzen könnte man dann natürlich auch größere Nutzlastverkleidungen von 4.70 m Durchmesser. Diese wird frühzeitig abgeworfen und beeinflusst die Nutzlast kaum.

Das ganze wäre noch zu optimieren, indem man eine weitere vierte Stufe einführt, z.B. die bisherige H10, und dafür die zweite und dritte Stufe etwas erleichtert: Da diese einen höheren spezifischen Impuls als die zweite Stufe hat, resultiert nun eine noch etwas höhere Nutzlast: 13.8 t

Typenblatt Ariane 4 XXL2

Länge:
maximaler Durchmesser:
Startgewicht:

54,90-58,70 m
4,70 m
757.300 kg

Einsatzzeitraum:
Starts:
Fehlstarts:
Zuverlässigkeit:

?
?
?

Nutzlast:

13800 kg (in einen GTO Orbit)

Stufe 1 L220

Länge:
Durchmesser:
Startgewicht:
Leergewicht:
Triebwerk:
Schub:

Brenndauer:
Treibstoff:
spezifischer Impuls:

28,39 m
3.80 m
252.200 kg (max.)
18.510 kg
5 Triebwerke Viking IVB
5 x 680 kN (Meereshöhe)
5 x 758 kN (Vakuum)
164 s
NTO/UH25
2432 m/s (Meereshöhe) 2747 m/s (Vakuum)

Flüssigbooster PAL

Länge:
Durchmesser:
Startgewicht:
Leergewicht:
Triebwerk:
Schub:
Brenndauer:
Treibstoff:

19,00 m
2,22 m
8 x 4.550 kg (max.) 4100-4400 kg (typ.)
8 x 44.650 kg (max.) 43.550 kg (typ.)
1 x Viking VI
670 kN (Meereshöhe), 750 kN (maximal)
142 s
NTO/UH25

Stufe 2 L93

Länge:
Durchmesser:
Startgewicht:
Trockengewicht:
Triebwerk:
Schub:
Brenndauer:
Treibstoff:
spezifischer Impuls:

11.61 m
4,53 m
100,400 kg (max.)
8.600 kg
3 x Viking VB
3 x 798 kN (Vakuum)
126 s
NTO/UH25
2904 m/s

Stufe 3 H33

Länge:
Durchmesser:
Startgewicht:
Leergewicht:
Triebwerke:
Schub:
Brenndauer:
Treibstoff:
spezifischer Impuls (Vakuum)

11.14 m (max.)
4,53 m
36.600 kg
3,100 kg
3 x HM-7B
3 x 64.8 kN (Vakuum)
753 s
LOX/LH2
4373 m/s

Stufe 4 H10-III

Länge:
Durchmesser:
Startgewicht:
Leergewicht:
Triebwerke:
Schub:
Brenndauer:
Treibstoff:
spezifischer Impuls (Vakuum)

11.14 m (max.)
2,60 m
13.140 kg
1,240 kg
1 x HM-7B
1 x 64.8 kN (Vakuum)
780 s
LOX/LH2
4373 m/s


Länge:
Durchmesser:
Gewicht:

1.04 m
4.00 m
600 kg

Nutzlasthülle

Länge:
Volumen:
Durchmesser:
Gewicht:

8.60, 9.60 und 11.10 m
60 m³ / 70 m³ / 86 m³
4.00 m
750 / 810 kg

Spelda

Volumen:
Durchmesser:
Höhe:
Gewicht:

23 m³ / 26 m³ / 32 m³ / 42 m³
4.00 m
1,80 m / 2,10 m / 2.80 / 3.80 m
300 kg / 350 kg / 380 kg / 410 kg

Verwundert? Nein normale Raketentechnik. Eine Kostenabschätzung ist natürlich nicht leicht. Aber ein paar Hausnummern: Wenn man annimmt, dass die Kosten proportional zu der anzahl der Triebwerke ist und die HM-7B Triebwerke doppelt so teuer sind wie die Viking, dann müsste die letzte Version rund 2.1 mal teurer als eine Ariane 44L sein. Allerdings ist die Nutzlast 2.8 mal höher. Netto gesehen sind die Kosten pro Kilogramm also um rund 74 % der einer Ariane 4. Selbst wenn damit nicht der Startpreis einer Ariane 5 erreicht würde (Ziel: 45 % geringere Kosten pro Nutzlast - erreicht?) - man hätte aber auch nicht die 8.000 Millionen Euro Entwicklungskosten für diese eingespart und könnte die Herstellung subventionieren (bei der Ariane 5 tut man das trotz niedrigerem Startpreis ja auch mit 196 Millionen Euro pro Jahr! : EGAS Programm von 2005-2009 mit einem Gesamtvolumen von 960 Millionen Euro) Des weiteren gäbe es natürlich die Möglichkeit die Technik zu erneuern, z.B. eine dritte Stufe mit dem Vinci Triebwerk auszurüsten und nur eines anstatt dreien einzusetzen.

Büchertipps:

Von mir gibt es mehrere Bücher zum Thema Trägerraketen. Speziell der Themenkreis "Europäische Trägerraketen" liegt mir, als bekennender Ariane 1-4 Fan, speziell am Herzen. Es gibt zwei größere Bände.

Der erste Band "Europäische Trägerraketen 1: "Von der Diamant zur Ariane 4 - Europas steiniger Weg in den Orbit" behandelt die europäische Trägerraketenentwicklung beginnend von der Diamant bis zur Ariane 4. Dieses 404 Seiten starke Buch ist auch in drei Einzelbänden erhältlich, für diejenigen Leser, die sich nur für einen bestimmten Typ interessiert:

Die aktuellen Trägerraketen - Ariane 5 und Vega werden in einem zweiten Band in der gleichen Ausführlichkeit besprochen. "Europäische Trägerraketen 2: Ariane 5, 6 und Vega". Auch hier liegt das Hauptaugenmerk auf der Technik der Träger. Auch die Investitionen in den Weltraumbahnhof Kourou und die Konkurrenten auf dem kommerziellen Markt werden angesprochen.

Nachdem im Februar 2012 der Jungfernflug der Vega erfolgte, habe ich das Kapitel über die Vega ausgekoppelt. Das Buch wurde um die Entwicklungen in den letzten Jahren und eine ausführliche Beschreibung der Starts bis 2016 ergänzt. Alle technischen Daten wurden gegen neue Veröffentlichungen gegengeprüft, erweitert. Weitere Ergänzungen gab es bei den Plänen für die Weiterentwicklung. Insgesamt entstanden so etwa 20 neue Seiten und bei 30 gab es gravierende Änderungen.

Hier geht's zur Gesamtübersicht meiner Bücher mit direkten Links zum BOD-Buchshop. Die Bücher sind aber auch direkt im Buchhandel bestellbar (da ich über sehr spezielle Themen schreibe, wird man sie wohl kaum in der Auslage finden) und sie sind natürlich in den gängigen Online-Plattformen wie Amazon, Libri, Buecher.de erhältlich.

Mehr über diese Bücher und weitere des Autors finden sie auf meiner Website Raumfahrtbucher.de.


© des Textes: Bernd Leitenberger. Jede Veröffentlichung dieses Textes im Ganzen oder in Auszügen darf nur mit Zustimmung des Urhebers erfolgen.
Sitemap Kontakt Neues Impressum / Datenschutz Hier werben / advert here Buchshop Bücher vom Autor Top 99