Bernd Leitenbergers Blog

Mission to Mars Teil 1

Ich will heute mal in einer losen Blogserie die technischen Herausforderungen einer bemannten Marsmission skizzieren. Heute geht es um das Bahnmechanische. Es gibt eine ideale Bahn mit niedrigstem Energiebedarf und beliebig viele andere. Die mit dem niedrigsten Energiebedarf hat folgende Eigenschaften:

Das Problem ist nun folgendes: Wenn man auf einer Hohmannellipse zum Mars fliegt, so benötigt man dazu etwa acht Monate. Man muss also acht Monate vor dem Zeitpunkt der idealen Position losfliegen. Das Problem ist nun nur folgendes: Die Rückreise dauert wiederum acht Monate. Wenn man ankommt ist die Erde weiter gewandert und nicht an der Position an der man sie braucht.

Die früheren Planungen in den sechziger und siebziger Jahren wollten die gesamte Missionsdauer minimieren. Das ist nur möglich, wenn die Erde bei der Rückkehr da ist wo man sie benötigt. Doch auch sie wandert weiter. Acht Monate später, also der Rückreisezeit ist sie in der Umlaufbahn um 240 Grad weiter gewandert, man müsste also um sie zu erreichen gegen die Bahnrichtung starten, also praktisch die Bahn umdrehen. Daher plante man damals Bahnen mit Ellipsen die weit exzentrischer sind, also der sonnennächste Punkt innerhalb der Erdbahn oder der sonnenfernste außerhalb der Marsbahn liegt. Die Flugzeit auf diesen ist kürzer und vor allem schneiden sie die Marsbahn an einem Punkt vor der Konjunktion und gleiches gilt für die Erdbahn. Solche Bahnen erlauben dann Aufenthalte von bis zu 30 Tagen Dauer auf dem Mars. Der Preis dafür ist, dass auf diesen Bahnen viel höhere Startenergien benötigt werden. Unter bestimmten Umständen ist dies leicht reduzierbar indem der Rückweg über die Venus erfolgt. Doch der Preis dafür ist eine sehr hohe Wiedereintrittsgeschwindigkeit von über 14 km/s in die Erdatmosphäre.

Damals gab es keine Erfahrungen mit langen Missionen im All, sodass die Minimierung der Reisezeit maximale Priorität hatte. Diese Mission wäre aber nur mit nuklearen Antrieben durchführbar gewesen. Chemische Antriebe hätten nicht die Energie aufgebracht, elektrische Antriebe hätten eine zu lange Zeit zum Beschleunigen gebraucht.

Heute gehen die Planungen davon aus, das unausweichliche zu akzeptieren. Das bedeutet eine Rückfluggelegenheit gibt es dann, wenn wieder eine Hohmannbahn vorliegt. Das ist nach einem Marsjahr nach dem Abflug von der Erde der Fall. Die Aufenthaltsdauer auf dem Mars beträgt dann 776 Tage minus der Dauer für den Rückflug , also je nach Ellipsenbahn um die 500-550 Tage Aufenthaltsdauer. Die gesamte Missionsdauer beträgt dann knapp unter 3 Jahren.

Für Hohmannellipsen sind die Geschwindigkeiten recht einfach berechenbar:

Schon bei diesem klassischen Szenario kann man einige Parameter variieren. Neben der Minimierung der Reisedauer (etwas höhere Startgeschwindigkeiten führen zu exzentrischen Ellipsen mit kürzeren Reisezeiten) gibt es mehrere größere Variationen:

Aus meiner Sicht wäre die ideale Bahn eine 24,6 Stunden Bahn um den Mars, z.B. eine 200 x 34000 km Bahn. Ein Tag dauert auf dem Mars 24,6 h. So gibt es pro Tag ein Startfenster von der Oberfläche zur Station. Gleichzeitig werden nur etwas mehr als 900 m/s benötigt um diese Bahn zu erreichen. Der Rückstart vom Mars ist dagegen rund 1.300 m/s aufwendiger als wie für eine kreisförmige 300 km Bahn.

Der nächste Teil skizziert nun die einzelnen Elemente einer Marsmission und möglich Variationen dieser.

Die mobile Version verlassen