Bernd Leitenbergers Blog

Subsynchrone, supersynchrone Orbits und die Proton

Am Montag startete eine Proton einen Satelliten in einen supersynchronen Orbit. Da ich mal vermute, das die meisten nichts mit dem Begriff anfangen können, denke ich ist es an der Zeit ihn zu erklären. Die super- und subsynchronen Orbits gab es sehr lange Zeit nur bei der Atlas. Es sind Übergangsbahnen zum GTO Orbit. In der Theorie ist die optimalste Strategie einen GTO Orbit zu erreichen, wenn man möglichst nahe der Erde in einer möglichst kurzen Zeit stark beschleunigt und eine Übergangsbahn erreicht, der erdfernster Punkt auf der Höhe des GEO ist. Dort nach 5 Stunden angekommen zirkularisiert eine Zündung die Bahn und baut die Inklination zum Äquator ab. Auch diese sollte möglichst kurz sein.

Wenn eine Stufe sehr lange arbeitet (das gilt auch für die Apogäumsmotoren von Satelliten die meist nur 400 bis 500 N Schub haben) ist es günstiger die einzelnen Manöver in mehrere Teilmanöver zu splitten um Gravitationsverluste zu verringern. Das ist bei der langen Brennzeit der Breeze M von 2.400 s der Fall. Daher hat diese 3-4 Zündungen um den GTO Orbit zu erreichen, der auch meist etwas anders ist als bei Ariane üblich. Umgekehrt startete die Luftwaffe mit der Titan 3+4 sehr viele Satelliten „off perigree“, also mit einem Perigäum nahe des Erdbodens. Das war möglich weil die Transtage Oberstufe gleich die Zirkularisierung durchführte.

Ein Subsynchroner GTO ist ist nun ein GTO dessen Apogäum unterhalt des GTO (also kleiner als 36000 km). Ein supersynchroner ist einer dessen Apogäums höher als GTO ist. (bis zu 70.000 km sind üblich). Beide haben ihre Ursache in der marktbeherrschenden Stellung von Ariane in den Neunzigern. Ein Kunde musste bei der Atlas immer einen festen Preis zahlen. Arianespace versuchte dagegen, Satelliten so zu kombinieren, dass die Nutzlast optimal ausgelastet wurde. Was machte nun der Kunde wenn sein Satellit etwas zu leicht oder etwas zu schwer für die Atlas war? War die Nutzlast zu schwer, so reichte es nicht für das Apogäum in der Höhe des GEO. In diesem Falle musste der Satellit mit seinen eigenem Treibstoff zuerst den Orbit anheben und erst dann konnte er ihn zirkularisieren. Das ist offensichtlich eine Lösung, sie reduziert aber die Lebensdauer des Satelliten. Doch welchen Sinn macht der supersynchrone Orbit? Nun klar wird dies bei den beiden Formeln die für Impulsmanöver gelten.

v = √(GM × ((2 ÷ x)-(1 ÷ Halbachse))

GM ist das Produkt aus Gravitationskonstante und Erdmasse

Halbachse ist der Halbe Durchmesser des ganzen Orbits (Apogäum + Perigäum / 2) berechnet vom Erdmittelpunkt aus

x ist der momentane Abstand,

Bei einem Standard GTO (186 x 35887 km) hat der Satellit bei x = 35887 km eine Geschwindigkeit von 1592,4 m/s, die Kreisbahngeschwindigkeit beträgt 3071,1 m/s. Der Satellit muss also um 1478,7 m/s schneller werden. Bei einem supersynchronen Orbit von 186 x 70000 km sind es an dieser Stelle 3739 m/s also eine geringere Differenz. Doch da es auch um den Bahnvektor geht, ist dies nicht direkt zu vergleichen. Bedeutender ist eine zweie Gleichung, denn der Satellit muss auch die Inklination angleichen. Dies sind beim Start vom CSG aus nur 5,2 Grad, wobei Ariane durch Anpassung der Aufstiegsbahn sogar auf 2 Grad erniedrigen kann und vom Cape Kennedy sind es 28,8 Grad (reduzierbar auf etwa 27 Grad). Beim Start vom Baikonur aus sind es dagegen 51,63 Grad, reduzierbar auf etwa 50 Grad. (siehe unten)

Eine Inklinationsänderung ist berechenbar nach:

vi = 2× sin(Winkel ÷ 2) × v

v ist die momentane Geschwindigkeit. Aufgrund der Multiplikation mit v ist es günstiger diese im Apogäum bei der niedrigsten Geschwindigkeit durchzuführen. typische vi für GTO Orbits sind:

Weltraumbahnhof Inklination vi
CSG 5,2 Grad 140,6 m/s
CCAF 28,8 Grad 742,2 m/s
Kosmodrom Baikonur 51,6 Grad 1299,1 m/s

Dies wird zur zeitgleich durchgeführten Anhebung des Apogäums durchgeführt, sodass die Geschwindigkeiten sich vektoriell addieren. Daher ist die Gesamtänderung nicht ganz so dramatisch. Die Gesamtgeschwindigkeit beträgt bei Standard GTO 1500 m/s beim Start vom CSG aus, 1800 m/s beim Start vom CCAF aus und 2100 m/s beim Start von Baikonur aus.

Von Bedeutung ist nun, dass bei einem supersynchronen Orbit die Geschwindigkeit im Apogäum geringer ist. Im obigen Fall mit 70.000 km Höhe sind es nur 909 m/s. Das bedeutet es wird weniger Treibstoff benötigt um die Inklination abzubauen. Zeitgleich hebt man das Perigäum auf 35587 m/s an. Dazu benötigt man eine Geschwindigkeitsänderung um 1019 m/s. In der Summe sind es dann 1290 m/s die benötigt werden (Baikonur, 51,5 Grad Anfangsorbit). Man hat dann eine Bahn von 35887 x 70000 km. Diese muss man dann noch mit einer weiteren Zündung in 35887 km Höhe zirkularisieren. Dazu braucht man weitere 414 m/s. In der Summe sind es dann 1704 m/s, also weniger als die 2100 m/s bei einem normalen GTO, aber mehr als die 1500 m/s die man bei einem Start vom CSG aus braucht.

Arianespace hat eine solche Marktdominanz, dass ILS mit der Breeze M normalerweise „energiekompatible“ Orbits anstrebt. Sprich: sie entlassen die Nutzlast nicht in einem 51,5 Grad geneigten GTO Orbit, da hier der Satellit 600 m/s mehr benötigt um die hohe Inklination abzubauen, was seine Lebensdauer sehr stark beschränken würde. Die ideale Lösung ist der obige supersynchrone Orbit. Nur dauert die Mission dann sehr lange. Die letzte Zündung im Apogäum erfolgt erst 9 Stunden nach dem Start. Bisher entließ die Breeze M die Nutzlast in Bahnen mit einem höheren Apogäum und einer erniedrigten, aber noch vorhandenen Inklination. Beim Start von Anik G1 waren es folgende Manöver

 

Manöver Perigäum Apogäum Inklination
Parkorbit nach erster Zündung 173 km 173 km 51,5 Grad
nach zweiter Zündung 270 km 5000 km 50,3 Grad
nach drittr Zündung 425 km 35799 km 49,1 Grad
nach vierrter Zündung 9138 m/s 35786 km 13,4 Grad

Die dritte Zündung hebt das Perigäum an und senkt die Inklination ab. Es wird beides kombiniert, weil es energetisch ungünstiger ist die Manöver nacheinander durchzuführen. Es sind auch vier Manöver, obwohl zwei reichen würden (bei leichten Nutzlasten sind es sogar bis zu fünf), weil die lange Brennzeit der Breeze M sonst nicht nur Perigäum, sondern auch Apogäum anheben würde. Man erkennt das schon bei dem Perigäum das während der ersten Brennperiode um 100 km und bei der zweiten um 150 km anwuchs. Ein zweiter Punkt ist, dass die Breeze M der Proton aus der kleineren Breeze KM der Rockot entwickelt wurde. Dazu hat man einfach um die bisherige Stufe einen ringförmigen Zusatztank herumgebaut und dieser wird nach der dritten Zündung abgeworfen wird. Während des Betriebs ist das nicht möglich um eine Kollision zu vermeiden. Daher müssen die Manöver so aufgeteilt werden, dass so viele Zündungen nötig sind.

Das um den GTO zu erreichen zwei Zündungen nötig sind, hat ebenfalls mit dem Start im Norden zu tun. Energetisch günstig ist es das Aufweiten der Ellipse über dem Äquator durchzuführen, weil so automatisch die Inklination absinkt. Zu diesem Zeitpunkt ist die Stufe aber noch über China. Auch alle folgenden Zündungen finden aus demselben Grund über dem Äquator statt. Man sieht dies am Groundtrack, wobei durch die langen Brennzeiten und hohe Geschwindigkeit im Apogäum schon 30 Grad vorher damit begonnen wird.

Lediglich beim Start in Äquatornähe kommt man mit nur einer Zündung aus. Schon beim Start von Cape Canaveral sind es zwei, wobei hier die Freiflugphase mit einer Viertelstunde aber deutlich kürzer ist. Also Folge kommt Ariane 5 mit einer Oberstufe aus, die nur einmal gezündet werden kann. Alle anderen Träger haben wiederzündbare Stufen.

Die mobile Version verlassen