Mit der Vega zum Merkur

Ich schließe mit dem heutigen Blog an die beiden letzten an, insbesondere dem Letzten mit der Skizzierung einer Marsmission.

Der Merkur ist noch geeigneter für Ionenantriebe, weil deren Vorteile hier besser zu Geltung kommen:

  • Der Geschwindigkeitsunterschied zu einer Erdbahn ist hoch – mindestens 14,6 km/s bei Inklinationsangleichung und 13,8 km ohne.
  • Der Merkur ist sonnennäher, daher kann der Solargenerator mehr Leistung liefern als in Erdnähe und so mehr Geschwindigkeit abbremsen.

Bisher sind nur drei Raumsonden zum Merkur aufgebrochen: Mariner 10 passierte ihn dreimal, und zwar nahe seines Aphels, also dem Punkt, wo die Bahn am weitesten von der Sonne entfernt ist. Zu diesem Punkt konnte ein einmaliger Vorbeiflug an der Venus die Sonde umlenken.

Messenger umkreiste den Merkur mehrere Jahre lang, benötigte dafür aber zwei Vorbeiflüge an der Venus und drei weitere am Merkur selbst um die Bahn an die von Merkur anzupassen. Trotzdem bestand fast die Hälfte der Sonde aus Treibstoff für Bahnkorrekturen und das einschwenken in eine Umlaufbahn

BepiColombo wird den Merkur aus einem Mix aus Vorbeiflügen und Betrieb von Ionentriebwerken erreichen und braucht dafür noch länger, nämlich 7 Jahre und noch mehr Vorbeiflüge. Continue reading „Mit der Vega zum Merkur“

Die Lösung für ein überflüssiges Problem: die mittlere Entfernung für eine Kartierung

Heute will ich mich wieder einem Problem widmen, das wohl für niemanden außer mir eines ist. Es geht um die Kartierung eines der erdnahen Planeten. Mit RADAR geht das bei allen, mit Kameras bei Mars und Merkur, wobei ab und an auch das Wetter bei Mars einen Strich durch die Rechnung machen kann. Ich denke dabei an einen polaren Satelliten, der bei jedem Umlauf einen festen Streifen aufnimmt. Jeder Streifen überlappt sich leicht und nach x Tagen ist der ganze Planet erfasst. Das ist zwar auch nicht optimal, denn so überlappen sich die Streifen jenseits des Äquators immer mehr und ab dem 60 Breitengrad vollständig und die Datenmenge entspricht so π/2 also rund 57 % mal mehr als die Fläche. Continue reading „Die Lösung für ein überflüssiges Problem: die mittlere Entfernung für eine Kartierung“

Mit dem Sonnensegel zu Merkur

Bei der Renovierung meines Berechungsprogramms habe ich mir nun auch das Modul für Sonnensegel vorgenommen und damit wieder experimentiert. Ein Ergebnis will ich euch heute vorstellen. Aber fangen wir mal mit den Basics an. Continue reading „Mit dem Sonnensegel zu Merkur“

Die Lösung für ein überflüssiges Problem: schnell zu Merkur

Merkur ist der innerste der Planeten. Anders als alle anderen inneren Planeten hat er aber selten Besuch bekommen. 1974/75 besuchte ihn dreimal die Raumsonde Mariner 10. Dies war eine Vorbeiflugmission. Es folgte 2004 Messenger. Sie schwenkte im März 2011 in einen Orbit ein. Es soll noch BepiColombo folgen, ebenfalls eine Orbitermission, diesmal aber mit zwei Orbitern. Ursprünglich war auch ein Lander geplant, doch er fiel Budgetrestriktionen zum Opfer. Auch BepiColombo wird sieben Jahre brauchen, um Merkur zu erreichen. Demgegenüber schaffte Mariner 10 den Weg in weniger als fünf Monaten. Da bin ich beim heutigen Blogthema: schnell zu Merkur. Wie schnell geht es?

Nun um die Frage kurz zu beantworten: Natürlich geht es schnell. Doch der Preis ist, dass man ein hohes ΔV zur Merkur-Umlaufbahn bei der Ankunft hat. Das muss man abbauen und das kostet Treibstoff. Ich will den Artikel nicht mit Berechnungen vollstopfen. Es sind ohnehin nur zwei Formeln nötig: Die Geschwindigkeit eines Körpers um einen anderen erhält man mit der Vis-Viva Gleichung, wenn man die Bahnparameter und momentanen Abstand kennt. Die Geschwindigkeit, die man braucht, um von einer Sonnenumlaufbahn in eine Planetenumlaufbahn zu gelangen (und umgekehrt) erhält man mit dem hyperbolischen Exzess. Beides ist in meinen Grundlagenartikeln erläutert. Continue reading „Die Lösung für ein überflüssiges Problem: schnell zu Merkur“

“Dragon 2 is designed to be able to land anywhere in the solar system”

Ach ja der gute Musk, er haut einen Witz nach dem nächsten raus. Der letzte ist der obige. Doch da es Leute gibt die nicht das technische Wissen haben den Witz als solchen zu erkennen, prüfen wir ihn mal auf die Wahrheit.

Da weder die NASA noch SpaceX ein bemanntes Programm jenseits des Erdorbits haben befasse ich mich nur mit unbemannten Missionen. Bemannt könnte man mit der Falcon 9 zwar den Mond erreichen – doch eine Falcon Heavy kann nicht so viel Nutzlast transportieren damit sie auch wieder zurückkommen. Die NASA selbst entwickelt mit der Orion aber ihr eigenes Raumschiff.

Auch bei unbemannten Missionen werden es SpaceX-Missionen sein, denn egal wie billig die Dragon ist, die NASA baut derzeit Raumsonden mit einer Trockenmasse von 0,5 bis 1 t und da eine 6 t schwere Dragon einzusetzen wäre ungefähr so als würde man mit dem Schwerlasttransporter den Einkauf erledigen der in zwei Einkaufstüten passt.

Also fangen wir mal an. Die Dragon 2.0 wiegt leer 6,0 t nach Spacex. Die Dragon 1 konnte maximal 1,2 t Treibstoff aufnehmen. Ich nehme an dass dies auch für die Dragon 2 zutrifft. Mehr Treibstoff erfordert weitere Tanks. Da diese wie die Super-Draco Triebwerke druckstabilisiert sind sind sie recht schwer. Nimmt man die Strukturfaktoren der EPS-Stufe so wiegen die Tanks für 1000 kg Triebstoff 100 kg inklusive des nötigen Druckgases und der Druckgasflasche. Von diesem Verhältnis gehe ich bei den folgenden Betrachtungen aus. Continue reading „“Dragon 2 is designed to be able to land anywhere in the solar system”“