Der ideale „grüne“ Treibstoff

Eigentlich wollte ich den Beitrag unter „Münchhausens Kolumne“ ablegen, aber dann fiel mir nichts ein, was gegen ihn sprechen sollte. so kommt er unter Satire und Fiktion, wobei das Fiktion der passende Oberbegriff ist. Seit einigen Jahren hat die Umweltbewegung ja auch die Raumfahrt erreicht und ein Thema sind „green fuels“ oder wie man im deutschen sagen würde umweltfreundliche Treibstoffe. Sie sollen auch bei einer Havarie möglichst umweltverträglich sein. Die Alternativen werden vor allem bei Hydrazinen gesucht, die alle giftig sind. Die NASA untersucht Hydroxylammoniumnitrat als Einkomponentensystem. Gedacht wird vor allem an Satelliten, wobei meiner Ansicht nach aufgrund der Treibstoffmenge Stufen viel interessanter wären. Aber da wird man wohl dann gleich auf LOX/Kerosin umsteigen. Continue reading „Der ideale „grüne“ Treibstoff“

Die GTO Nutzlast der Falcon 9

Nun steht ja mit einwöchiger Verspätung der Start von SES 8 an. An dieser Stelle daher zuerst noch eine Nachlese zu dem letzten Start. Genaueres von der Erststufe und ob man was geborgen hat und wenn ja wie viel und wie ganz gibt es nicht, geschweige den Bilder. Die gibt es nur im Erfolgsfall. Immerhin hat SpaceX nun eine Erklärung für das ausbleibende Zünden des Merlin im Vakuum präsentiert worden. Der Treibstoff (Kerosin) sei in den Leitungen zumindest teilweise festgefroren und das hat das Abschalten verursacht. Die Ursache ist der kalte Sauerstoff der zum Unterkühlen der Leitungen geführt hat. Das wäre am Boden durch die wärmende Atmosphäre nicht vorgekommen. Nun wolle man isolieren.

Andere Raumfahrtfirmen isolieren immer ihre Leitungen, auch für am Boden gezündete Stufen, schließlich müssen die Leitungen an der Außenseite oder durch einen Tank geführt werden und die Flüssigkeit darin ist dann immer zu kalt oder zu warm je nachdem wie man die Tanks angeordnet hat. Continue reading „Die GTO Nutzlast der Falcon 9“

Subsynchrone, supersynchrone Orbits und die Proton

Am Montag startete eine Proton einen Satelliten in einen supersynchronen Orbit. Da ich mal vermute, das die meisten nichts mit dem Begriff anfangen können, denke ich ist es an der Zeit ihn zu erklären. Die super- und subsynchronen Orbits gab es sehr lange Zeit nur bei der Atlas. Es sind Übergangsbahnen zum GTO Orbit. In der Theorie ist die optimalste Strategie einen GTO Orbit zu erreichen, wenn man möglichst nahe der Erde in einer möglichst kurzen Zeit stark beschleunigt und eine Übergangsbahn erreicht, der erdfernster Punkt auf der Höhe des GEO ist. Dort nach 5 Stunden angekommen zirkularisiert eine Zündung die Bahn und baut die Inklination zum Äquator ab. Auch diese sollte möglichst kurz sein. Continue reading „Subsynchrone, supersynchrone Orbits und die Proton“

Bahnberechnungen Teil 1: Inklinationsänderungen

Nun geht es im zweiten Teil um Inklinationsänderungen, etwas was offensichtlich auch Experten ein Rätsel ist. Diesen Eindruck hatte ich zumindest, als die Columbia verlorenging und dort einige „Experten“ vorschlugen, man hätte die Raumfähre doch an die ISS andocken und evakuieren können – dumm nur wenn das aufgrund 20 Grad Inklinationsunterschied physikalisch nicht geht.

An und für sich ist die Tatsache recht einfach: auf einer niedrigen Erdumlaufbahn bewegt sich eine Satellit mit 7,5 km/s auf einer Bahn mit einer bestimmten Neigung zum Äquator. Diese hängt vom Startort ab. Da der Startort beim ersten Umlauf wieder überflogen wird, kann Inklination nicht kleiner als die geographische Breite sein, zumindest nicht viel kleiner (die Rakete bewegt sich südwärts und damit findet ein Teil der Brennphase bei einem niedrigen Breitengrad statt, wodurch die Inklination sinkt). Eine höhere Inklination ist immer möglich, wenn man Richtung nördlich oder südlich startet. Continue reading „Bahnberechnungen Teil 1: Inklinationsänderungen“

Bahnberechnungen Teil 1: Geschwindigkeiten und Orbitänderungen

Ich habs zwar schon mal ausführlich in meiner Website, aber ich schneide es mal im Blog an, auch weil ich dann wieder einen kleinen Füller habe. Das wichtigste zuallererst: Da alle Bahnen im dreidimensionalen Raum verlaufen, sind in Wirklichkeit alle Manöver Geschwindigkeitsvektoren, die sich zu den Bewegungsvektoren addieren. Ohne genaue Kenntnis des Bewegungsvektors und des Geschwindigkeitsvektors ist so die Bahn nicht bestimmbar. Es gibt nur eine Ausnahme: Wenn beide Vektoren in derselben Richtung liegen, also man in die Flugrichtung beschleunigt oder abbremst. Auf diesen Spezialfall, der aber trotzdem der häufigste ist, wollen wir uns konzentrieren. Continue reading „Bahnberechnungen Teil 1: Geschwindigkeiten und Orbitänderungen“